Rounding Techniques in Approximation Algorithms

Lecture 22: Pseudodistributions

Lecturer: Nathan Klein

1 The Dual of SoS

Last time we talked about the sum of squares hierarchy. We showed that a polynomial p over the cube has a degree d SoS certificate if and only if there is a matrix $A \in \mathbb{R}^{(n+1)^{d/2} \times (n+1)^{d/2}}$ so that $A \succeq 0$ and $p(x) = ((1, x)^{\otimes d/2})^T A(1, x)^{\otimes d/2}$ on all $x \in \{-1, 1\}^n$. We also showed a degree 4 SoS certificate for the triangle graph, and in particular the polynomial $2 - \frac{1}{2}((1 - x_u x_v) + (1 - x_u x_w) + (1 - x_v x_w)) = \frac{1}{2}(1 + x_u x_v + x_v x_w)$.

1.1 Computing a Degree *d* SoS Proof

How do we actually find such proofs? Using the above, given a polynomial p, to find a degree dSoS proof it's enough to find a matrix $A \in \mathbb{R}^{(n+1)^{d/2} \times (n+1)^{d/2}}$ so that $A \succeq 0$ and $p(x) = g_A(x)$ for all $x \in \mathbb{R}^n$, where $g_A(x) = ((1, x)^{\otimes d/2})^T A(1, x)^{\otimes d/2}$.

Let's try to find this matrix, then:

$$A \succeq 0$$

$$g_A(x) = p(x) \quad \forall x \in \{-1, 1\}^n$$

We already know we can handle the PSD constraint using the ellipsoid method. But the second family of constraints looks a bit scary, since there are exponentially many of them. However, it's not hard to see that this can be simplified down to $(n + 1)^d$ constraints. Why? Well, $g_A = ((1, x)^{\otimes d/2})^T A(1, x)^{\otimes d/2}$ has at most $(n + 1)^d$ terms, as it has maximum degree *d*. So it is enough that all of the coefficients on these terms are equal after multilinearization, leading to $(n + 1)^d$ constraints. (Notice we are assuming here that *p* has degree at most *d*, but this is necessary to have any hope of solving this program.) Finally, notice that this is indeed a set of linear constraints: we can write the coefficient of $x^S = \prod_{i \in S} x_i$ by simply summing the entries of the matrix which contribute to the term x^S . So, we can use the ellipsoid method to find degree *d* SoS certificates in time polynomial in n^d .

Now suppose we want to find the best possible degree *d* SoS proof, say for Max Cut. Here, let $p_M = \sum_{\{u,v\} \in E} \frac{1}{2}(1 - x_u x_v)$. If we could prove that $\alpha - p_M$ was SoS for some *d*, this would demonstrate that $OPT \leq \alpha$. The goal then is to find the minimum α so that $\alpha - p_M$ has a degree *d* SoS certificate. We could do this by trying the above feasibility problem for all α , but we could also optimize directly, i.e. solve:

min
$$\alpha$$

s.t. $A \succeq 0$
 $g_A(x) \equiv \alpha - p_M(x)$

What about the dual of this problem?

1.2 Pseudodistributions

The dual of finding SoS certificates is finding pseudodistributions, which we will define shortly. First notice the following:

Fact 1.1. The set of polynomials which have degree d SoS certificates is a closed convex cone.

Proof. A set *S* is a convex cone if for any $f, g \in S$, we have $\alpha f + \beta g \in S$ whenever $\alpha, \beta \geq 0$. This holds here because if $f = \sum f_i^2$ and $g = \sum g_i^2$ then $f + g = \sum (\sqrt{\alpha}f_i)^2 + \sum (\sqrt{\beta}g_i)^2$. We leave the fact that it is closed as an exercise.

We will think of functions as being specified by all 2^n inputs of the cube. So the set SoS_d of functions with degree *d* SOS certificates will live in \mathbb{R}^{2^n} . But now, since this is a convex cone, if a polynomial *p* is outside of it there must be a hyperplane going through the origin separating it from this cone.

We define $\langle f, g \rangle = \sum_{x \in \{-1,1\}^n} f(x)g(x)$ for two functions on the cube. Now, there is a halfspace

$$H = \{ f \in \mathbb{R}^{2^n} \mid \langle \mu, f \rangle \ge 0 \}$$

which contains all polynomials in SoS_d^1 but not p (where $\mu \in \mathbb{R}^{2^n}$). Furthermore, without loss of generality, we can scale μ so that its entries sum to 1 (since it's just an inequality). So, it's kind of like a distribution, although it's really not, since it can be supported on negative numbers. That's why we call this a pseudodistribution, which has the following properties:

Definition 1.2 (Pseudodistribution). A degree d pseudodistribution for a polynomial p is a function $\mu : \{-1,1\}^n \to \mathbb{R}$ so that the expectation $\tilde{\mathbb{E}}_{\mu}$ obeys:

- 1. $\tilde{\mathbb{E}}_{\mu}[1] = 1$
- 2. For all polynomials g of maximum degree d/2, $\mathbb{\tilde{E}}_{\mu}[g^2] \ge 0$.

Where we define $\tilde{\mathbb{E}}_{\mu}[f(x)] = \langle \mu, f \rangle = \sum_{x \in \{-1,1\}^n} \mu(x) f(x)$, similar to a normal expectation.

¹Remember that every function on the cube is a polynomial.

Fact 1.3. Suppose $p \notin SoS_d$ and μ is the normal vector of a hyperplane going through the origin separating *p* from SoS_d, scaled WLOG so that $\sum_{x \in \{-1,1\}^n} \mu(x) = 1$. Then μ is a degree d pseudodistribution.

Proof. To show (1), note: $\tilde{\mathbb{E}}_{\mu}[1] = \sum_{x \in \{-1,1\}^n} \mu(x) = 1$ since we scaled μ . (2) follows because the SoS cone is contained in *H*. In particular, $g^2 \in SoS_d \subseteq H$ for any *g* of degree at most d/2, so $\tilde{\mathbb{E}}_{\mu}[g^2] = \sum_{x \in \{-1,1\}^n} \mu(x) g^2(x) \ge 0$ as desired.

To gain some more intuition for this object, notice that a real distribution is always a pseudodistribution. And an easy fact is that every pseudodistribution of degree at least 2n is a real distribution. This is because the indicator of any point in the cube is a polynomial of degree *n*, which says that μ must be non-negative everywhere.

But, of course, when we move below degree 2*n*, there are pseudodistributions with negative probabilities that can masquerade as real distributions. Let's see an example of this on our favorite instance: max cut for the triangle. Our polynomial p is $\frac{1}{2}(1 + x_u x_v + x_w x_w + x_v x_w)$: we would like to prove that the max cut is at most 2. This is degree 4 SoS but not degree 2. There is a reason that degree 2 SoS does not work: the following pseudodistribution over $x \in \{-1, 1\}^3$. This is a dual certificate for the polynomial, i.e. a proof that it is not degree 2 SoS.

- 1. Assign weight $-\frac{1}{16}$ to the points (-1, -1, -1) and (1, 1, 1) and assign weight $\frac{3}{16}$ to the remaining points. By summing the weights we can see $\tilde{\mathbb{E}}_{\mu}[1] = 1$.
- 2. Where *Y* is the "covariance matrix" of this distribution with $Y_{uv} = \tilde{\mathbb{E}}_{\mu}[x_u x_v]$, we have:

$$\tilde{\mathbb{E}}_{\mu}[(\sum c_v x_v)^2] = c^T Y c \ge 0$$

since one can compute that $Y = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix}$, the same covariance matrix we saw for max cut, which is PSD. So, all polynomials p of degree 1 obey $\tilde{\mathbb{E}}_{\mu}[p^2] \ge 0$.

 μ forms a hyperplane so that all polynomials *g* that *are* degree 2 SoS obey $\tilde{\mathbb{E}}_{\mu}[g] \ge 0$: that's what (2) implies, since any such g can be written as a sum of squares of polynomials of degree at most 1. But this isn't true for p! When x = (-1, -1, -1) or (1, 1, 1) we get 2 for a contribution of $-\frac{1}{4}$. In the other cases p(x) = 0. So, $\tilde{\mathbb{E}}_{\mu}[p] = -\frac{1}{4} < 0$.

1.3 **Representing Pseudodistributions: Pseudoexpectations**

You may worry that pseudodistributions aren't very useful objects since they have exponential size. Thankfully, the following is true:

Lemma 1.4. Let μ be a degree d pseudodistribution. Then, there is a polynomial μ' of degree at most d such that

$$\tilde{\mathbb{E}}_{\mu}[p] = \tilde{\mathbb{E}}_{\mu'}[p]$$

for every polynomial p of degree at most d.

Why is this useful? Well, μ' has only $(n + 1)^d$ coefficients, so it has polynomial size for constant d. This means that even if we cannot exactly query μ , we can at least efficiently evaluate the expectation of low degree polynomials.² Let's prove it:

²Multiply the polynomials and expand to see all the at most $n^{O(d)}$ terms. Now using linearity of expectation we can easily compute the expectation overall.

Proof. Consider the subspace *S* of all polynomials on the cube of degree at most *d*. We can write $\mu = \mu' + \mu_{\perp}$, where μ' is in *S* and μ_{\perp} is orthogonal to it, i.e. $\langle g, \mu_{\perp} \rangle = 0$ for all $g \in S$. But now,

$$\mathbb{E}_{\mu}[g] = \langle \mu' + \mu_{\perp}, g \rangle = \langle \mu', g \rangle = \mathbb{E}_{\mu'}[p]$$

as desired.

Notice we didn't use anything about μ , this holds for any distribution. The result is we have an efficiently computable pseudoexpectation operator $\tilde{\mathbb{E}}_{\mu}$ which has $\tilde{\mathbb{E}}_{\mu}[g^2] \ge 0$ for polynomials g of degree at most d/2.

One final useful fact:

Fact 1.5. μ is a degree d pseudodistribution if and only if $\tilde{\mathbb{E}}_{\mu}[1] = 1$ and

$$\tilde{\mathbb{E}}_{\mu}[((1,x)^{\otimes d/2})((1,x)^{\otimes d/2})^T] \succeq 0.$$

This matrix is called the pseudomoment matrix.

SoS Algorithm

For all *d* and all polynomials *p* of degree at most *d*, exactly one of the following holds:

1. *p* has a degree *d* SoS certificate

2. There is a degree *d* pseudoexpectation $\tilde{\mathbb{E}}_{\mu}$ such that $\tilde{\mathbb{E}}_{\mu}[p] < 0$.

And we can determine this in polynomial time for constant d (up to exponentially small additive error), as well as obtain the certificate in case (1) or all the pseudomoments in case (2).

1.4 Back to Max Cut

We can now rephrase the max cut algorithm in the language of pseudoexpectations.

Theorem 1.6. *Given a degree-2 pseudodistribution* μ *, there is a probability distribution* ν *over the cube so that*

$$\mathbb{E}_{\nu}\left[p_{M}\right] \geq 0.878 \cdot \mathbb{\tilde{E}}_{\mu}[p_{M}]$$

where p_M is the max cut polynomial $\sum_{\{u,v\}\in E} \frac{1}{2}(1-x_ux_v)$.

The proof is exactly the same. \mathbb{E}_{μ} allows us to determine $\mathbb{E}_{\mu}[x_u x_v]$ for all $u, v \in V$. This lets us build a covariance matrix and proceed as before. In fact, all we have done is rename the variables in some sense. $\mathbb{E}_{\mu}[x_u x_v]$ is really just y_{uv} .